Az implikált volatilitás a Black-Scholes képletből származik, és fontos elem az opciók értékének meghatározásában. Az implikált volatilitás az opciószerződés alapjául szolgáló eszköz jövőbeni variabilitásának becslése. A Black-Scholes modell használta az opciók árát. A modell feltételezi, hogy a mögöttes eszközök ára geometriai Brown-mozgást követ, állandó drifttel és volatilitással. Az implikált volatilitás a modell egyetlen inputja, amelyet nem lehet közvetlenül megfigyelni. A implikált volatilitás meghatározásához meg kell oldani a Black-Scholes egyenletet. A Black-Scholes egyenlet további inputjai a mögöttes eszköz ára, az opció lehívási ára, az opció lejártáig eltelt idő és a kockázatmentes kamatláb.
A Black-Scholes modell számos feltevést tesz, amelyek nem mindig helytállóak. A modell feltételezi, hogy a volatilitás állandó, amikor a valóságban gyakran mozog. A modell feltételezi továbbá, hogy a hatékony piacok az eszközárak véletlenszerű séta alapján történnek. A Black-Scholes modell az európai opciókra korlátozódik, amelyeket csak az utolsó napon lehet gyakorolni, szemben az amerikai opciókkal, amelyek bármikor gyakorolhatók a lejárat előtt.
Black-Scholes és a volatilitási vonal
A Black-Scholes egyenlet feltételezi a mögöttes eszköz árváltozásainak lognormal eloszlását. Ezt Gauss-eloszlásnak is nevezik. Az eszközárak gyakran jelentős ferde és kurtózist mutatnak. Ez azt jelenti, hogy a magas kockázatú lefelé irányuló lépések gyakran gyakrabban fordulnak elő a piacon, mint azt egy Gauss-eloszlás megjósolja.
Ezért a mögöttes eszközárak lognormalisának feltételezésekor meg kell mutatnia, hogy a Black-Scholes modell szerint az implikált volatilitások hasonlóak minden egyes sztrájkárhoz. Az 1987-es piaci összeomlás óta azonban a monetáris opciók feltételezett volatilitása alacsonyabb volt, mint a pénzből távol lévő vagy a pénzben nagyon távol eső volatilitások. Ennek a jelenségnek az az oka, hogy a piac az árképzést valószínűsíti, ha a nagy volatilitás a piacok lefelé mutató irányába halad.
Ez a volatilitási ferde jelenlétéhez vezetett. Ha az azonos lejárati dátummal rendelkező opciók implikált volatilitásait ábrázolja egy grafikonon, akkor mosoly vagy ferde alak látható. Így a Black-Scholes modell nem hatékony az implikált volatilitás kiszámításához.
Történelmi Vs. Implicit volatilitás
A Black-Scholes módszer hiányosságai miatt egyesek nagyobb jelentőséget tulajdonítanak a történelmi volatilitásnak, szemben az implikált volatilitással. A múltbeli volatilitás a mögöttes eszköz egy korábbi idõszakban realizált volatilitása. Ezt úgy határozzák meg, hogy megmérik a mögöttes eszköz szórását az adott idõszak átlagától. A szórás az árváltozásnak az átlagos árváltozáshoz viszonyított változékonyságának statisztikai mértéke. Ez különbözik a Black-Scholes módszerrel meghatározott implikált volatilitástól, mivel az a mögöttes eszköz tényleges volatilitására épül. A történelmi volatilitás használatának azonban vannak hátrányai is. A volatilitás eltolódik, amikor a piacok különböző rendszereken mennek keresztül. Így a történelmi volatilitás nem lehet a jövőbeli volatilitás pontos mértéke.